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In this paper we investigate the transition to chaos in the motion of particles advected by open flows with
obstacles. By means of a topological argument, we show that the separation points on the surface of the
obstacle imply the existence of a saddle point downstream from the obstacle, with an associated heteroclinic
orbit. We argue that as soon as the flow becomes time periodic, these orbits give rise to heteroclinic tangles,
causing passively advected particles to experience transient chaos. The transition to chaos thus coincides with
the onset of time dependence in open flows with stagnant points, in contrast with flows with no stagnant points.
We also show that the nonhyperbolic nature of the dynamics near the walls causes anomalous scalings in the
vicinity of the transition. These results are confirmed by numerical simulations of the two-dimensional flow
around a cylinder.
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Two-dimensional flow around an obstacle is stationary for
low Reynolds numbers, and the dynamics of passively ad-
vected particles is integrable. For higher Reynolds numbers,
the flow displays a time-periodic shedding of vortices, lead-
ing to the formation of the von Kármán vortex street �1�. In
this nonstationary regime, particles commonly experience
transient chaotic motion �2,3�. Chaotic advection is present
in many important systems, especially in environmental
flows such as the atmosphere and the oceans �4�. It is rel-
evant for key environmental phenomena such as the deple-
tion of the ozone layer �5� and plankton blooms �6–9�.

A natural question to ask is whether the transition to chaos
in open flows coincides with the transition from stationary to
time-dependent flow; does chaotic advection appear as soon
as the flow becomes time dependent? In this paper, the tran-
sition from the regular to the chaotic regime is investigated
with a simplified analytical flow model, which incorporates
the main features of the flow dynamics near the transition
from stationarity to time dependence. The main goal is to
determine if and under what conditions the transition from
regular to chaotic advection is simultaneous with the transi-
tion from stationary to time-dependent fluid motion, and to
identify the dynamical mechanisms governing this transition.
Our main result is that the nature of the transition to chaotic
advection, and when it takes place, depend on whether or not
there are stagnant points in the flow—points where the flow
velocity is zero, such as on the surface of walls and ob-
stacles. In the absence of stagnant points, the advection dy-
namics remains regular immediately after the transition to
nonstationarity. This means that there is a range of Reynolds
numbers, above the critical value for the onset of nonstation-
arity, for which the advection remains regular, even though
the flow is time dependent. In this case, chaotic advection
only sets in when the strength of time-dependent perturba-
tion of the velocity field exceeds a certain threshold. If, on
the other hand, stagnant points are present in the flow, we
show that the motion of particles becomes chaotic as soon as
the time dependence sets in. We argue in this work that this
qualitative difference between the two cases is due to the
presence of the stagnant points, resulting in the existence of
heteroclinic orbits. These orbits break up and produce a het-

eroclinic tangle even for arbitrarily small time-dependent
perturbations of the stationary flow, leading to chaos. This
situation is very common in realistic flows, since stagnant
points always exist in the presence of walls.

We also study in this work the effects of the nonhyper-
bolic nature of the advection on the dynamics, a result from
the presence of walls in the flow. Due to the no-slip boundary
conditions imposed on the Navier-Stokes equations, the sur-
face of an obstacle consists of a set of fixed points with zero
eigenvalues. Therefore the advection dynamics is nonhyper-
bolic when obstacles or other boundaries are present. The
heteroclinic orbits which exist before the time dependence
sets in break into heteroclinic tangles. Once this breakup
occurs, particles coming from the outside can access the cha-
otic region present on the wake of the obstacle. In hyperbolic
systems, the number of particles Nv entering the region ex-
cluded by the previously existing separatrix is expected to
depend on a bifurcation parameter p �such as the Reynolds
number� as Nv��p− pc��, with pc being the critical param-
eter value �it can be thought of as the Reynolds number for
which the flow becomes time dependent�. Here, � is a critical
exponent, which depends on the eigenvalues of the fixed
points �10,11�. We find that due to the presence of the surface
consisting of fixed points and the nonhyperbolic dynamics
close to this surface, this relationship does not hold in our
case. We have instead an anomalous law of the form Nv
�exp�k�p− pc�−��, where k and � are constants.

In order to analyze the transition from a stationary to a
time-dependent flow, we use an analytic model for a two-
dimensional incompressible flow with a cylindrical obstacle,
adapted from a model introduced in �2�. This model can
serve as a prototype for the flow of other bluff-body ob-
stacles in a uniform background flow. For two-dimensional
�2D� incompressible flows, the velocity �ẋ , ẏ� of an advected
particle is given by a time-dependent stream function
��x ,y , t�, such that

ẋ�t� =
�

�y
��x,y,t�, ẏ�t� = −

�

�x
��x,y,t� . �1�

We use for � the form introduced in Ref. �2�, which is an
analytical approximation to the time-dependent, periodic re-

PHYSICAL REVIEW E 78, 016317 �2008�

1539-3755/2008/78�1�/016317�5� ©2008 The American Physical Society016317-1

http://dx.doi.org/10.1103/PhysRevE.78.016317


gime of the flow, with two vortices being shed from the back
of the cylinder in an alternate manner:

��x,y,t� = f�x,y�g�x,y,t� . �2�

Here f�x ,y� accounts for the no-slip boundary conditions on
the surface of the cylinder of unit radius:

f�x,y� = 1 − exp�− a��x2 + y2 − 1�2� , �3�

with a determining the width of the boundary layer. The
factor g�x ,y , t� describes the two vortices and the back-
ground flow:

g�x,y,t� = − wh1�t�g1�x,y,t� + wh2�t�g2�x,y,t� + u0ys�x,y� ,

�4�

where hi�t�, i=1,2 describe the growth and decay of the
vortex amplitudes that are periodic with a period of T=1 and
vortex strength w, and gi�x ,y , t� determine the spatial struc-
ture of the vortices which are moving in the positive x direc-
tion, as given in Ref. �2�. The term s�x ,y� corresponds to the
shielding effect of the cylinder on the uniform background
flow of velocity u0. The parameters of this flow model are set
in �2� to fit the simulation results of the Navier-Stokes equa-
tions for a constant background velocity in a channel. We use
the same parameter values except for the vortex strength w,
which we choose as our bifurcation parameter. For w=0, the
velocity field is stationary; as w increases from 0, the flow
becomes time dependent. This flow model emulates the
qualitative behavior of the real system. We note, however,
that in the limit of w→0, the model represents two moving
vortices with infinitesimally small vorticity, whereas in real
flows, two stationary vortices of finite strength exist before
the transition to time-dependent fluid motion. However, by
using this model, we uncover general features of the transi-
tion to chaotic advection in time-dependent Hamiltonian
flows. To confirm that our results are not dependent on the
details of the model, we also consider later an alternative

flow model, which has a limiting behavior �for w→0� closer
to that of the realistic system; we find the same results.

In order to investigate the dynamics, we continuously in-
ject particles at a fixed position and plot a superposition of
all their trajectories in a stroboscopic manner with the period
T=1 �i.e., we take snapshots of their positions at integer
times�. In this way we get a streakline. This is shown in Fig.
1 for w=2. We clearly see that the motion near the cylinder’s
surface on the back of the obstacle is chaotic, with the pres-
ence of prominent Kolmogorov-Arnol’d-Moser �KAM� is-
lands. Separation points S+ ,S− and accumulation point S0 on
the cylinder’s surface are also noticeable.
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FIG. 1. Part of a numerically calculated streakline for w=2 in
the wake of the obstacle. Ten thousand particles were injected per
period at position �x ,y�= �−3,0� into the flow, and their subsequent
positions were plotted every period, at times given by t mod T=0,
until they leave the time-dependent region and travel downstream.
The solid black area on the left is the cylindrical obstacle.
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FIG. 2. Ratio of the number Nv of particles entering the wake to
all N particles injected into the flow at time t=0, as a function of the
bifurcation parameter, with random initial positions distributed uni-
formly in the region −16.0�x�−1.1, −0.05�y�0.05. The func-
tion log�.� denotes the natural logarithm. In �a� the original model
with bifurcation parameter w is investigated by injecting N=1
�106 particles; the fitted curve corresponds to Nv /N�exp�kw−��,
where k=−15.44 and �=1.046. In �b� the alternative model with
bifurcation parameter � is investigated; the fitted curve corresponds
to Nv /N�exp�k�−��, where k=−2.807 and �=0.101. In these com-
putations, N=1�106 is used for parameters �	2�10−6, whereas
N=5�106 is used for smaller �. We verified that, even though the
particular value of the ratio Nv /N depends on where the particles
are introduced in the flow, the scaling coefficient � is independent
of this.
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In the region close to the KAM islands the particles
whose trajectories get close to the surface of the cylinder
exhibit transient chaotic motion. The particles that remain
further away from the cylinder do not penetrate this chaotic
region and are washed away rapidly by the background flow.
To study the probability of particles getting in the chaotic
region, a large number N of particles are injected into the
flow upstream from the cylinder, and the number Nv of those
which visit the region near the KAM surfaces is recorded.
The ratio Nv /N is plotted for different values of w in Fig.
2�a�. We observed in our simulations that this ratio smoothly
approaches zero as w is decreased to zero. Particles thus
penetrate the chaotic region in the wake for any nonzero
value of w. This means that the transition to chaotic scatter-
ing coincides with the transition from stationarity to time
dependence: as soon as the flow ceases to be stationary, the
advection becomes chaotic, and particles coming from the
inflow region can access the chaotic region �albeit only in
small numbers for w close to 0�. For heteroclinic tangles
connecting hyperbolic saddle points, one would expect the
ratio to scale as Nv /N�w�, where �=1.5 for incompressible
flows �10,12�. However, this relationship does not hold for
our simulations. We find that the relation Nv /N�exp�kw−��
fits well with our numerical data; see Fig. 2�a�. This anoma-

lous scaling is a direct consequence of the nonhyperbolic
nature of the dynamics. We confirmed that the escape time of
particles with initial conditions inside the chaotic regions
�but outside the KAM islands� scales as a power law, which
is characteristic of nonhyperbolic scattering.

To understand the transition between the regular and cha-
otic advection from a dynamical point of view, we focus on
the stagnation points S+ ,S− and accumulation point S0 on the
downstream surface of the cylinder, depicted in Fig. 3�a�.
The lateral points S+ and S− have unstable manifolds ema-
nating from them, which act as separatrices at the transition
parameter w=0, when the flow is stationary. Because of the
incompressibility of the flow, there must be a similar point
with a stable manifold, and that is the central point S0. In this
open flow the velocity has to be positive far downstream
�x→
�. This implies that the stable manifold of S0 cannot
extend infinitely far in the downstream direction, otherwise
the boundary condition would be violated, as there would be
regions of negative flow velocity arbitrarily far downstream.
The only way that incompressibility and the downstream
boundary condition can be simultaneously satisfied is by the
unstable manifolds of S+ and S− joining each other and form-
ing a saddle point, as shown in Fig. 3�a�. For the stationary
case w=0, there are therefore heteroclinic orbits joining the
saddle point with the separation points, as shown in Fig. 3�a�.
These heteroclinic orbits act as separatrices, insulating the
inner region near the wall from the outer region. When the
flow becomes time dependent for w	0, we expect the
breakup of the separatrices and the formation of a hetero-
clinic tangle, which is schematically depicted in Fig. 3�b�.
From these considerations we thus expect that the scattering
becomes chaotic as soon as the flow becomes time depen-
dent; this is indeed what we observe in our simulations. Our
reasoning above depends purely on the existence of stagna-
tion points, and our conclusion is a result of the interplay of
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FIG. 3. Schematic picture of the manifolds escaping from the
separation points in the flow around an obstacle. In �a�, the mani-
folds are shown for an autonomous system, such that they form
separatrices. In �b�, the manifolds for a time-periodic flow are de-
picted, showing a heteroclinic tangle. Images �c� and �d� show the
manifolds and streamlines in the case of persistent vortices.

FIG. 4. Visualization of the heteroclinic tangle for w=2. Un-
stable manifolds are visualized by injecting 100�100 particles
close to the separation points and plotting their subsequent positions
stroboscopically for 18 periods. The stable manifolds are visualized
by injecting 800�800 particles uniformly in the region 0.9�x
�1.6, −0.5�y�0.5 and checking if they leave downstream �reach
x= +10� or pass through the region 1.25�x�1.35, −0.15�y
�0.1; the boundary between these two outcomes marks the stable
manifold of the saddle point.
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the incompressible character of the fluid with the openness of
the flow with its associated boundary condition. We thus ex-
pect the general conclusion to be valid for other flows with
stagnant points �or regions�. For example, we should have a
similar behavior for stagnant or trapped fluid bodies as well,
such as the structures depicted in Figs. 3�c� and 3�d�.

We calculated the heteroclinic tangle numerically. For the
parameter value w=2, the manifolds are depicted in Fig. 4.
We found that the heteroclinic tangle is present for all w
	0, consistent with our conclusion described above, that
transient chaotic advection appears as soon as the flow be-
comes time dependent. This is also confirmed in Fig. 2�a�,
where the ratio of particles accessing the chaotic region be-
hind the cylinder is positive for all w	0. As argued above,
the fact that the transitions to nonstationarity and to chaotic
scattering coincide is a consequence of the presence of stag-
nant points on the surface of the obstacle. This behavior is
qualitatively different from that of flows without stagnant
points, which have no separatrices like those shown in Fig. 3.

To verify that our findings are not an artifact of the par-
ticular flow model we use, we investigated a different model.
In this modified model, there are two stationary vortices
present in the time-independent case, as expected in real
flows, in contrast to the previous model. This is achieved by
replacing Eq. �4� with

g�x,y,t� = ��− wh1�t�g1�x,y,t� + wh2�t�g2�x,y,t�� + �1 − ��

��− wsg1s�x,y� + wsg2s�x,y�� + u0ys�x,y� , �5�

where the two new functions are

g1s�x,y� = exp�− R0��x − xs�2 + �s
2�y − ys�2�� , �6�

g2s�x,y� = exp�− R0��x − xs�2 + �s
2�y + ys�2�� , �7�

describing the contribution to the stream function of two
stationary vortices. These vortices are positioned at xs=1.0
and y= �ys= �0.3. The parameters are chosen to be �s
=2.0, ws=6.0, such that the stationary vortices behave quali-
tatively as expected in real flows. The value w=24 is used in
accordance with �2�. The parameter � is used in this model
as the bifurcation parameter. For �=0, the flow is stationary,
whereas for �=1 the model is the same as the one used in
�2�. The streamlines of this flow for �=0 are shown in Fig.
5�a�.

For all values of �, we find again a heteroclinic tangle, as
depicted in Fig. 5�b� for �=0.001. This region is accessible
for particles injected upstream from the obstacle. By inject-
ing many particles into the flow upstream, the number Nv of
particles entering the chaotic region is shown in Fig. 2�b� for
different values of �. We see that the ratio of chaotic to all
particle trajectories, again, follows Nv /N�exp�k�−��.

The above analysis is only valid for flows with stagnation
points. In flows with no boundaries we may have no stagna-
tion points at the stationary time-dependent transition, and in
this situation we expect that advection will be regular imme-
diately after the onset of time dependence. An example of
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FIG. 5. Results for the modified model. �a� Streamlines of the
modified model with �=0, representing a time-independent flow
with two stationary vortices. �b� Heteroclinic tangle for �=0.001.
The stable manifolds of the saddle point and the unstable manifolds
of the separation points on the surface of the cylinder were com-
puted in the same way as in Fig. 4.
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FIG. 6. Escape time for the model of Eq. �8�, with initial con-
ditions taken at the x=0 segment, as a function of the initial y
coordinate. Escape was defined to occur when the particles reach
x=20, after which they are washed downstream. The parameters are
V=2, 
=2, L=5, u=1, k=1. �a� uses �=2 and shows regular �non-
chaotic� advection, while �b� uses �=10 and shows chaotic
advection.
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boundaryless flows consists of a flow with a uniform velocity
field, on which a time-dependent component is superim-
posed. If the time-dependent part has small amplitude, a par-
ticle will be washed away by the constant background flow,
and there will be no chaotic advection. Transition to chaos
only happens for sufficiently high amplitudes, in contrast to
the case with boundaries. An example of such a flow is given
by the stream function

� = Vy + � exp	−
�x − L�2 + y2

2
2 
cos�k�y − ut�� , �8�

where V is the constant background velocity, � is the
strength of the periodic perturbation �so the flow is stationary
for �=0�, 
 is the characteristic length scale of the pertur-
bation, k is its wave number, and u is its propagation veloc-
ity; the period of the perturbation is given by 2� /ku. This
flow is a modification of the one described in Ref. �6�, used
for modeling ecological flows. Based on the above reason-
ing, we predict that there is a range of positive � for which
the flow is time dependent, but the advection is regular, in
contrast with the flow with boundaries. A simple way to test
this is to plot the escape time of a particle as a function of its
initial starting point; this plot should be smooth in the case of
regular advection, while it has a Cantor set of singularities
where the escape time diverges when advection is chaotic.
Figure 6�a� shows that for a small value of � ��=2�, the
escape time plot is perfectly regular, and the advection is
regular, even though the flow is time dependent; this sup-
ports our predictions. As � increases, this flow eventually
becomes chaotic; this can be seen in Fig. 6�b� �with �=10�,

which shows the patterns of peaks characteristic of chaotic
scattering. Magnifications of regions with peaks in this figure
reveal an infinitely fine structure of ever higher peaks, a re-
sult of the fact that the peaks lie on a Cantor set. We found
that for this system, and for the parameters we used �see
caption of Fig. 6�, the transition from regular to chaotic
advection happens at around ��5.

In conclusion, we established that fluid flows with stag-
nant points or regions contain separatrices that are barriers to
transport in the stationary case. These separatrices break up
as soon as the flow becomes time dependent, resulting in a
chaotic sea that can trap for a transient time the particles
coming from upstream. Hence there is an immediate transi-
tion to chaotic advection in these systems. This behavior is to
be contrasted with systems without such stagnant regions:
there the lack of separatrices imply that a small time-
dependent velocity component is not enough to compensate
for the background velocity that washes out the particles, and
hence time periodicity does not necessarily imply chaos. Due
to the presence of the surface and the KAM islands the dy-
namics around an obstacle is nonhyperbolic, which yields a
nontrivial scaling near the bifurcation. As a final remark, we
note that, although the stagnant points with zero velocity can
only be distinguished for an obstacle with fixed position, a
system with a moving obstacle will experience the same dy-
namics in a comoving coordinate system.
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